Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.

Learning, memory, and cognition are thought to require normal long-term potentiation (LTP) of synaptic strength, which in turn requires binding of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B. For LTP induction, many additional required players are known. Here we tested the hypothesis that CaMKII/GluN2B binding also mediates the more elusive maintenance of synaptic strength. Intriguingly, the CaMKII inhibitor tatCN21 reduces synaptic strength only at high concentrations necessary for CaMKII/NMDAR disruption (20 μm) but not at lower concentrations sufficient for kinase inhibition (5 μm). However, increased concentration also causes unrelated effects. Thus, to distinguish between correlation and causality, we used a pharmacogenetic approach. In a mouse with a mutant NMDAR GluN2B subunit that is CaMKII binding-incompetent, any tatCN21 effects that are specific to the CaMKII/GluN2B interaction should be abolished, and any remaining tatCN21 effects have to be nonspecific (i.e. mediated by other targets). The results showed that the persistent reduction of synaptic strength by transient application of 20 μm tatCN21 had a nonspecific presynaptic component (on fiber volley amplitude) that was unrelated to the CaMKII/GluN2B interaction or CaMKII activity. However, the remaining component of the persistent tatCN21 effect was almost completely abolished in the GluN2B mutant mouse. These results highlight the requirement for stringent pharmacogenetic approaches to separate specific on-target effects from nonspecific off-target effects. Importantly, they also demonstrate that the CaMKII/GluN2B interaction is required not only for normal LTP induction but also for the maintenance of synaptic strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app