Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immunotherapy with iTreg and nTreg Cells in a Murine Model of Inflammatory Bowel Disease.

Regulatory T (Treg) cells that express the transcription factor Foxp3 are essential for maintaining tolerance at mucosal interfaces, where they act by controlling inflammation and promoting epithelial cell homeostasis. There are two major regulatory T-cell subsets, "natural" CD4(+) Treg (nTreg) cells that develop in the thymus and "induced" Treg (iTreg) cells that develop from conventional CD4(+) T (Tconv) cells in the periphery. Dysregulated Treg cell responses are associated with autoimmune diseases, including inflammatory bowel disease (IBD) and arthritis. Adoptive transfer of Treg cells can modulate innate and adaptive immune responses and cure disease in animal models, which has generated considerable interest in using Treg cells to treat human autoimmune disease, prevent rejection of transplanted organs, and to control graft-versus-host disease following hematopoietic stem cell transplantation. Herein, we describe our modifications of a treatment model of T-cell transfer colitis designed to allow mechanistic investigation of the two major Treg cell subsets and to compare their specific roles in mucosal tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app