Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The Carboxyl Terminus of Eremomycin Facilitates Binding to the Non-d-Ala-d-Ala Segment of the Peptidoglycan Pentapeptide Stem.

Biochemistry 2016 June 22
Glycopeptide antibiotics inhibit cell wall biosynthesis in Gram-positive bacteria by targeting the peptidoglycan (PG) pentapeptide stem structure (l-Ala-d-iso-Gln-l-Lys-d-Ala-d-Ala). Structures of the glycopeptide complexed with a PG stem mimic have shown that the d-Ala-d-Ala segment is the primary drug binding site; however, biochemical evidence suggests that the glycopeptide-PG interaction involves more than d-Ala-d-Ala binding. Interactions of the glycopeptide with the non-d-Ala-d-Ala segment of the PG stem were investigated using solid-state nuclear magnetic resonance (NMR). LCTA-1421, a double (15)N-enriched eremomycin derivative with a C-terminal [(15)N]amide and [(15)N]Asn amide, was complexed with whole cells of Staphylococcus aureus grown in a defined medium containing l-[3-(13)C]Ala and d-[1-(13)C]Ala in the presence of alanine racemase inhibitor alaphosphin. (13)C{(15)N} and (15)N{(13)C} rotational-echo double-resonance (REDOR) NMR measurements determined the (13)C-(15)N internuclear distances between the [(15)N]Asn amide of LCTA-1421 and the (13)C atoms of the bound d-[1-(13)C]Ala-d-[1-(13)C]Ala to be 5.1 and 4.8 Å, respectively. These measurements also determined the distance from the C-terminal [(15)N]amide of LCTA-1421 to the l-[3-(13)C]Ala of PG to be 3.5 Å. The measured REDOR distance constraints position the C-terminus of the glycopeptide in the proximity of the l-Ala of the PG, suggesting that the C-terminus of the glycopeptide interacts near the l-Ala segment of the PG stem. In vivo REDOR measurements provided structural insight into how C-terminally modified glycopeptide antibiotics operate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app