JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Genomic Characterization of High-Grade Serous Ovarian Cancer: Dissecting Its Molecular Heterogeneity as a Road Towards Effective Therapeutic Strategies.

High-grade serous ovarian carcinoma (HGSOC) accounts for the majority of the ovarian cancer deaths, but over the last years little improvement in overall survival has been achieved. HGSOC is a molecularly and clinically heterogeneous disease. At genomic level, it represents a C-class malignancy having frequent gene losses (NF1, RB1, PTEN) and gains (CCNE1, MYC). HGSOC shows a simple mutational profile with TP53 nearly always mutated and with other genes mutated at low frequency. Importantly, 50 % of all HGSOCs have genetic features indicating a homologous recombination (HR) deficiency. HR deficient tumors are highly sensitive to PARP inhibitor anticancer agents, which exhibit synthetic lethality with a defective HR pathway. Transcriptionally, HGSOCs can be grouped into different molecular subtypes with distinct biology and prognosis. Molecular stratification of HGSOC based on these genomic features may result in improved therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app