JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review.

The relationship between dopamine (DA) tone in the prefrontal cortex (PFC) and PFC-dependent cognitive functions (for example, working memory, selective attention, executive function) may be described by an inverted-U-shaped function, in which both excessively high and low DA is associated with impairment. In the PFC, the COMT val158met single nucleotide polymorphism (rs4680) confers differences in catechol-O-methyltransferase (COMT) efficacy and DA tone, and individuals homozygous for the val allele display significantly reduced cortical DA. Many studies have investigated whether val158met genotype moderates the effects of dopaminergic drugs on PFC-dependent cognitive functions. A review of 25 such studies suggests evidence for this pharmacogenetic effect is mixed for stimulants and COMT inhibitors, which have greater effects on D1 receptors, and strong for antipsychotics, which have greater effects on D2 receptors. Overall, COMT val158met genotype represents an enticing target for identifying individuals who are more likely to respond positively to dopaminergic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app