Add like
Add dislike
Add to saved papers

STIM1 activation is regulated by a 14 amino acid sequence adjacent to the CRAC activation domain.

Oligomerization of the Ca(2+) sensor, STIM1, in the endoplasmic reticulum (ER) membrane, caused by depletion of ER Ca(2+) stores, results in STIM1 coupling to the plasma membrane Ca(2+) channel protein, Orai1, to activate Ca(2+) influx in a process known as store-operated Ca(2+) entry. We use fluorimetry-based fluorescence resonance energy transfer (FRET) to monitor changes in STIM1 oligomerization in COS7 cells transfected with STIM1 constructs containing selected truncations, deletions, and point mutations, and labeled with donor and acceptor fluorescent proteins at either the luminal (N-terminal) or the cytoplasmic (C-terminal) ends. Our results with sequential truncations of STIM1 from the C-terminus support previous evidence that the CRAC activation domain (CAD/SOAR, human sequence 342-448) is an oligomer-promoting segment of STIM1, and they show that truncation just after CAD/SOAR (1-448) causes significantly elevated basal cytoplasmic Ca(2+) and spontaneous STIM1 clustering. We find that a 14 amino acid sequence just C-terminal of CAD/SOAR (449-462) prevents spontaneous clustering and activation of STIM1 in COS7 cells. In response to store depletion, C-terminally labeled STIM1 without CAD/SOAR clusters together with CAD/SOAR-containing STIM1 constructs. However, these donor-acceptor pairs do not undergo a stimulated increase in FRET, exhibiting instead a decrease in FRET consistent with a stimulated conformational extension in full length STIM1. We find that the 14 amino acid sequence plays a regulatory role in this process. Overall, our FRET results provide evidence in live cells that Ca(2+) store depletion stimulates a conformational extension in the cytoplasmic segment of STIM1 that accompanies its oligomerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app