JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Relevance of charge balance and hyaluronic acid on alginate-chitosan sponge microstructure and its influence on fibroblast growth.

The study of biomaterials by electrical charge scaling to explore the role of net charge on biocompatibility and suitability for tissue regeneration has been limited as has the search for products that could improve this first-rate variable. In the present study, we prepared sponges composed of chitosan/alginate (CS/ALG) with or without hyaluronic acid (HA) by mixing polymer stock solutions of different net electric charge ratios (n(+/) n(-) ), and then lyophilizing them to obtain porous materials. The electric charge ratios n(+/) n(-) studied were 0.3, 0.8, 1.0, and 2.5 for CS/ALG and 0.3, 1.0, 1.9, and 3.7 for CS/ALG/HA sponges. Under these conditions a role for net electric charge balance over sponge microstructure rearrangement, protection to dissolution, cellular proliferation, and cell-cell interactions was apparent, effects that were enhanced by copolymer modification with HA. Mass balance, electric charge, and specific products that influence both such as HA, have a potential in biomaterials for wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2537-2543, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app