Add like
Add dislike
Add to saved papers

Core bead chromatography for preparation of highly pure, infectious respiratory syncytial virus in the negative purification mode.

Vaccine 2016 July 13
Respiratory syncytial virus (RSV) is an important human pathogen, and is the most frequent viral cause of severe respiratory disease in infants. In addition, it is increasingly being recognized as an important cause of respiratory disease in the elderly and immunocompromised. Although a passive prophylactic treatment does exist for high-risk neonates and children, the overall disease burden warrants the development of a safe and effective prophylactic vaccine for use in otherwise healthy newborns and children. RSV is known to be an extremely labile virus, prone to aggregation and loss of infectious titer during virus handling and preparation procedures. To date infective RSV virions have been prepared by methods which are not readily scalable, such as density gradient ultracentrifugation. In this study we describe a scalable, chromatography-based purification procedure for preparation of highly pure, infectious RSV. The purification scheme is based on core bead technology and hollow fiber tangential flow filtration (TFF) and results in a ∼60% recovery of infectious virus titer. This method can be used to prepare highly purified wild type or live-attenuated vaccine strain viruses with titers as high as 1×10(8) plaque forming units per mL. A live-attenuated RSV vaccine prepared by this method was found to be immunogenic and protective in vivo, and its purity was 50-200-fold greater with respect to host cell dsDNA and Vero host cell proteins, than the raw feed stream. The results presented here can be considered a starting point for downstream process development of a live-attenuated vaccine approach for prevention of disease by RSV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app