Add like
Add dislike
Add to saved papers

Damage in total knee replacements from mechanical overload.

The mechanical loads acting across the knee joint following total knee replacements (TKR) during activities of daily living have recently been measured using instrumented TKRs. Using a series of postmortem retrieved TKR constructs we investigated whether these mechanical loads could result in damage to the implant bone interface or supporting bone in the tibia. Eighteen cemented en bloc tibial components (0 to 22 years in service) were loaded under axial compression in increments from 1 to 10 times body weight and digital image correlation was used to measure bone strain and interface micromotion during loading and unloading. Failure was considered to occur when micromotion exceeded 150µm or compressive bone strain exceeded 7300με. The results show that all retrieved specimens had sufficient bone strength to support most activities of daily living, but ~40% would be at risk under larger physiologic loads that might occur secondary to a higher impacts such as jogging or a stumble. The tray-bone micromotion (regression model R(2)=0.48, p=0.025) was greater for donors with lower age at implantation (p=0.0092). Proximal bone strain (model R(2)=0.46, p=0.03) was greater for donors with longer time in service (p=0.021). Distal bone strain (model R(2)=0.58, p=0.005) was greater for donors with more time in service (p=0.0054) and lower peri-implant BMD (p=0.049). High mechanical overload of a single or repetitive nature may be an initiating factor in aseptic loosening of total joint arthroplasties and should be avoided in order to prolong the life of the implant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app