Add like
Add dislike
Add to saved papers

Vasculotide, an Angiopoietin-1 mimetic, ameliorates several features of experimental atopic dermatitis-like disease.

BMC Research Notes 2016 May 29
BACKGROUND: Earlier studies by our group have demonstrated that a transgenic animal engineered to express Tie2 under the control of the Tie2 promoter produced animals with a scaly skin phenotype that recapitulated many of the hallmarks of atopic dermatitis (AT-Derm). To test the hypothesis that this model of AT-Derm is driven by dysregulated Tie2-signalling, we have bred AT-Derm transgenic (TG) animals with TG-animals engineered to overexpress Angiopoietin-1 or -2, the cognate Tie2 ligands. These two ligands act to antagonize one another in a context-dependent manner. To further evaluate the role of Ang1-driven-Tie2 signalling, we examined the ability of Vasculotide, an Ang1-mimetic, to modulate the AT-Derm phenotype.

RESULTS: AT-Derm+Ang2 animals exhibited an accentuated phenotype, whereas AT-Derm+Ang1 presented with a markedly reduced skin disease, similarly VT-treated AT-Derm animals present with a clear decrease in the skin phenotype. Moreover, a decrease in several important inflammatory cytokines and a decrease in the number of eosinophils was noted in VT-treated animals. Bone marrow differentiation in the presence of VT produced fewer CFU-G colonies, further supporting a role for Tie2-signalling in eosinophil development. Importantly, we demonstrate activation of Tie2, the VT-target, in lung tissue from naïve animals treated with increasing amounts of VT.

CONCLUSIONS: The AT-Derm phenotype in these animals is driven through dysregulation of Tie2 receptor signalling and is augmented by supplemental Ang2-dependent stimulation. Overexpression of Ang1 or treatment with VT produced a similar amelioration of the phenotype supporting the contention that VT and Ang1 have a similar mechanism of action on the Tie2 receptor and can both counteract the signalling driven by Ang2. Our results also support a possible role for Tie2-signalling in the development of eosinophilic diseases and that activation of Tie2 may directly or indirectly modulate the differentiation of eosinophils, which express Tie2. In summary, these data support the hypothesis that this AT-Derm mouse model is driven by dysregulation of the Tie2 signalling pathway and increased Ang2 levels can aggravate it, whereas it can be reversed by either Ang1-overexpression or VT treatment. Moreover, our data supports the contention that VT acts as an Angiopoietin-1 mimetic and may provide a novel entry point for Tie2-agonist-based therapies for atopic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app