Add like
Add dislike
Add to saved papers

In Vivo Neurochemical Characterization of Developing Guinea Pigs and the Effect of Chronic Fetal Hypoxia.

The guinea pig is a frequently used animal model for human pregnancy complications, such as oxygen deprivation or hypoxia, which result in altered brain development. To investigate the impact of in utero chronic hypoxia on brain development, pregnant guinea pigs underwent either normoxic or hypoxic conditions at about 70 % of 65-day term gestation. After delivery, neurochemical profiles consisting of 19 metabolites and macromolecules were obtained from the neonatal cortex, hippocampus, and striatum from birth to 12 weeks postpartum using in vivo (1)H MR spectroscopy at 9.4 T. The effects of chronic fetal hypoxia on the neurochemical profiles were particularly significant at birth. However, the overall developmental trends of neurochemical concentration changes were similar between normoxic and hypoxic animals. Alterations of neurochemicals including N-acetylaspartate (NAA), phosphorylethanolamine, creatine, phosphocreatine, and myo-inositol indicate neuronal loss, delayed myelination, and altered brain energetics due to chronic fetal hypoxia. These observed neurochemical alterations in the developing brain may provide insights into hypoxia-induced brain pathology, neurodevelopmental compromise, and potential neuroprotective measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app