Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SMARCAD1 knockdown uncovers its role in breast cancer cell migration, invasion, and metastasis.

OBJECTIVE: Breast cancer is the most common cancer seen in women worldwide and breast cancer patients are at high risk of recurrence in the form of metastatic disease. Identification of genes associated with invasion and metastasis is crucial in order to develop novel anti-metastasis targeted therapy. It has been demonstrated that the DEAD-BOX helicase DP103 was implicated in breast cancer invasion and metastasis. SMARCAD1 is also a DEAD/H box-containing helicase, suggested to play a role in genetic instability. However, its involvement in cancer migration, invasion, and metastasis has never been explored.

RESEARCH DESIGN AND METHODS: Using two different designs of shRNA targeting SMARCAD1, we investigated the impact of SMARCAD1 knockdown on the migration, invasion, and metastasis potential of the breast cancer cells MDA-MB-231 and T47D.

RESULTS: We observed that SMARCAD1 knockdown in the invasive breast cancer cells MDA-MB-231, unlike in the non-invasive breast cancer cells T47D, was associated with an increased cell-cell adhesion and a significant decrease in cell migration, invasion, and metastasis due at least in part to a strong inhibition of STAT3 phosphorylation.

CONCLUSIONS: These results indicate that SMARCAD1 is involved in breast cancer metastasis and can be a promising target for metastatic breast cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app