Add like
Add dislike
Add to saved papers

Somatic mutations in GLI3 and OFD1 involved in sonic hedgehog signaling cause hypothalamic hamartoma.

OBJECTIVE: Hypothalamic hamartoma (HH) is a congenital anomalous brain tumor. Although most HHs are found without any other systemic features, HH is observed in syndromic disorders such as Pallister-Hall syndrome (PHS) and oral-facial-digital syndrome (OFD). Here, we explore the possible involvement of somatic mutations in HH.

METHODS: We analyzed paired blood and hamartoma samples from 18 individuals, including three with digital anomalies, by whole-exome sequencing. Detected somatic mutations were validated by Sanger sequencing and deep sequencing of target amplicons. The effect of GLI3 mutations on its transcriptional properties was evaluated by luciferase assays using reporters containing eight copies of the GLI-binding site and a mutated control sequence disrupting GLI binding.

RESULTS: We found hamartoma-specific somatic truncation mutations in GLI3 and OFD1, known regulators of sonic hedgehog (Shh) signaling, in two and three individuals, respectively. Deep sequencing of amplicons covering the mutations showed mutant allele rates of 7-54%. Somatic mutations in OFD1 at Xp22 were found only in male individuals. Potential pathogenic somatic mutations in UBR5 and ZNF263 were also identified in each individual. Germline nonsense mutations in GLI3 and OFD1 were identified in each individual with PHS and OFD type I in our series, respectively. The truncated GLI3 showed stronger repressor activity than the wild-type protein. We did not detect somatic mutations in the remaining 9 individuals.

INTERPRETATION: Our data indicate that a spectrum of human disorders can be caused by lesion-specific somatic mutations, and suggest that impaired Shh signaling is one of the pathomechanisms of HH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app