JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

New mouse model of skeletal muscle atrophy using spiral wire immobilization.

Muscle & Nerve 2016 October
INTRODUCTION: Disuse-induced skeletal muscle atrophy is a serious concern; however, there is not an effective mouse model to elucidate the molecular mechanisms. We developed a noninvasive atrophy model in mice.

METHODS: After the ankle joints of mice were bandaged into a bilateral plantar flexed position, either bilateral or unilateral hindlimbs were immobilized by wrapping in bonsai steel wire.

RESULTS: After 3, 5, or 10 days of immobilization of the hip, knee, and ankle, the weight of the soleus and plantaris muscles decreased significantly in both bilateral and unilateral immobilization. MAFbx/atrogin-1 and MuRF1 mRNA was found to have significantly increased in both muscles, consistent with disuse-induced atrophy. Notably, the procedure did not result in either edema or necrosis in the fixed hindlimbs.

CONCLUSIONS: This method allows repeated, direct access to the immobilized muscle, making it a useful procedure for concurrent application and assessment of various therapeutic interventions. Muscle Nerve 54: 788-791, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app