JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.

Skeletal muscle tissue engineering (SMTE) employs designed biomaterial scaffolds for promoting myogenic differentiation of myoblasts to functional myotubes. Oxidative stress plays a significant role in the biocompatibility of biomaterials as well as in the fate of myoblasts during myogenesis and is also associated with pathological conditions such as myotonic dystrophy. The inherent electrical excitability of muscle cells inspired the use of electroactive scaffolds for SMTE. Conducting polymers attracted the attention of researchers for their use in muscle tissue engineering. However, poor biocompatibility, biodegradability and development of oxidative stress associated immunogenic response limits the extensive use of synthetic conducting polymers for SMTE. In order to address the limitations of synthetic polymers, intrinsically electroactive and antioxidant silk fibroin/melanin composite films and electrospun fiber mats were fabricated and evaluated as scaffolds for promoting myogenesis in vitro. Melanin incorporation modulated the thermal stability, electrical conductivity of scaffolds, fiber alignment in electrospun mats and imparted good antioxidant properties to the scaffolds. The composite electrospun scaffolds promoted myoblast assembly and differentiation into uniformly aligned high aspect ratio myotubes. The results highlight the significance of scaffold topography along with conductivity in promoting myogenesis and the potential application of silk nanofibrous composite as electoractive platform for SMTE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app