JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG ΔureC::hly Improves Protection against Tuberculosis.

MBio 2016 May 25
UNLABELLED: The current tuberculosis (TB) vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), provides insufficient protection against pulmonary TB. Previously, we generated a listeriolysin-expressing recombinant BCG strain, which to date has successfully completed phase I and phase IIa clinical trials. In an attempt to further improve efficacy, we deleted the antiapoptotic virulence gene nuoG, encoding NADH dehydrogenase 1 subunit G, from BCG ΔureC::hly In vitro, deletion of nuoG unexpectedly led to strongly increased recruitment of the autophagosome marker LC3 to the engulfed vaccine, suggesting that nuoG also affects xenophagic pathways. In mice, BCG ΔureC::hly ΔnuoG vaccination was safer than BCG and improved protection over that of parental BCG ΔureC::hly, significantly reducing TB load in murine lungs, ameliorating pulmonary pathology, and enhancing immune responses. Transcriptome analysis of draining lymph nodes after vaccination with either BCG ΔureC::hly or BCG ΔureC::hly ΔnuoG demonstrated earlier and stronger induction of immune responses than that with BCG SSI and suggested upregulation of inflammasome activation and interferon-induced GTPases. In summary, BCG ΔureC::hly ΔnuoG is a promising next-generation TB vaccine candidate with excellent efficacy and safety.

IMPORTANCE: Autophagy and apoptosis are fundamental processes allowing cells to degrade their components or kill themselves, respectively. The immune system has adopted these mechanisms to eliminate intracellular pathogens. Residing in host cells, the causative agent of tuberculosis, Mycobacterium tuberculosis, has evolved strategies to set cellular programs of autophagy and apoptosis "on hold." The mycobacterial gene nuoG was found to prevent host cell apoptosis. We have deleted nuoG in the live vaccine candidate BCG ΔureC::hly, which is in phase II clinical development, to leave cellular apoptosis "on go" upon immunization. In preclinical models, this strategy boosted immunity and improved protection from M. tuberculosis infection. Unexpectedly, we obtained compelling evidence that mycobacterial nuoG facilitates inhibition of autophagic pathways, suggesting a new role for this gene in the host-pathogen interplay in tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app