Add like
Add dislike
Add to saved papers

Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca(2+)-ATPase in diabetic rats.

Biochimie 2016 August
The role of iron in the etiology of diabetes complications is not well established. Thus, this study was performed to test whether the iron-induced increase of oxidative/nitrative damage is involved in SERCA2a-related diabetic heart complication. Four randomly divided groups of rats were used: normal control group; iron overload group; diabetes group, and diabetic plus iron overload group. Iron supplementation stimulated cardiomyocyte hypertrophy and led to an increase in cardiac protein carbonyls, nitrotyrosine (3-NT) formation, and iNOS protein expression, thus resulting in abnormal myocardium calcium homeostasis of diabetic rats. The levels of SECA2a oxidation/nitration were significantly increased in the iron overload diabetic rats, along with a decrease in SECA2a expression and activity. In order to elucidate the possible role of iron in SERCA2a dysfunction, the effects of iron (Fe(3+) or hemin) on peroxynitrite (ONOO(-)) induced SERCA2a oxidation and nitration were further investigated in vitro. It was found that tyrosine nitration played more important role in SERCA2a inactivation than thiol oxidation. These results present a potential mechanism in which iron exacerbates the diabetes-induced oxidative/nitrative modification of SERCA2a, which may cause functional deficits in the myocyte associated with diabetic cardiac dysfunction. Our findings may help to further understand the role of iron in the pathogenesis of diabetic complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app