Add like
Add dislike
Add to saved papers

Micellization of long-chain ionic liquids in deep eutectic solvents.

Soft Matter 2016 June 29
The aggregation behavior of the ionic liquid (IL) 1-alkyl-3-methylimidazolium chloride with different alkyl chain lengths in a deep eutectic solvent (DES, composed of choline chloride and glycerol in a 1 : 2 mole ratio) was studied for the first time. The critical micellar concentration, micellar size and intermolecular interactions in IL/DES solutions were investigated by different techniques including the fluorescence probe technique, small angle X-ray scattering and Fourier transform infrared spectroscopy. The solvophobic effect dominates the micellization of CnmimCl in DES and the intermolecular hydrogen-bond interaction plays a positive role to promote micelle formation. The micellar solutions were utilized for the synthesis of the water-unstable metal-organic framework Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) at room temperature. X-Ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms confirm the formation of crystalline Cu3(BTC)2 nanocrystals with mesoporous structures. The morphologies and porosity properties of Cu3(BTC)2 nanocrystals can be modulated by varying the concentration of CnmimCl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app