JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Class II transactivator knockdown limits major histocompatibility complex II expression, diminishes immune rejection, and improves survival of allogeneic bone marrow stem cells in the infarcted heart.

This study was performed to investigate how to overcome immunorejection associated with allogeneic stem cell therapy in the infarcted heart. Allogeneic bone marrow mesenchymal stem cell (MSC) differentiation increases major histocompatibility complex II (MHC II) expression, inducing transition from immunoprivileged to immunogenic phenotype. MHC II expression is regulated by the class II transactivator (CIITA). We isolated and characterized mouse and human MSCs and knocked down CIITA expression. Wild-type (WT) or CIITA-knockout (CIITA(-)) mouse MSCs were implanted into infarcted mouse myocardia, and recipient allo-antibody formation, cell survival, and cardiac function were measured. WT mouse and human MSCs that were myogenically differentiated showed increased MHC II and CIITA expression. Differentiated CIITA(-) MSCs lacked MHC II induction and showed reduced cytotoxicity in allogeneic leukocyte coculture. Differentiation of human MSCs increased MHC II expression, which resulted in cytotoxicity in allogeneic leukocyte coculture and was prevented by CIITA small interfering RNA. In contrast to WT MSCs, CIITA(-) MSCs did not initiate recipient allo-antibody formation and instead survived in the injured myocardium and significantly improved ventricular function. Decreasing CIITA expression in allogeneic MSCs abolished MHC II induction during myogenic differentiation and prevented immunorejection of these cells from the infarcted myocardium, which enhanced beneficial functional effects of MSC implantation on myocardial repair.-Huang, X.-P., Ludke, A., Dhingra, S., Guo, J., Sun, Z., Zhang, L., Weisel, R. D., Li, R.-K. Class II transactivator knockdown limits major histocompatibility complex II expression, diminishes immune rejection, and improves survival of allogeneic bone marrow stem cells in the infarcted heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app