Add like
Add dislike
Add to saved papers

4-Hydroxybutenolide impairs cell migration, and invasion of human oral cancer SCC-4 cells via the inhibition of NF-κB and MAPK signaling pathways.

4-Hydroxybutenolide (K87), a synthetic compound from furfuryl alcohol via photooxidation, was used to investigate whether it can inhibit mobility, migration and invasion of SCC-4 human oral cancer cells in vitro. Cell viability was measured by flow cytometric assay, the enzymatic activities of MMP-2/9 were assayed by gelatin zymography analysis, the protein levels were assayed by western blotting, confocal laser microscopy and EMSA assay, and the gene expression of MMP-2/-7, FAK and ROCK1 mRNA were assayed by PCR. K87 decreased the percentage of viable cells in dose-dependent manner. K87 suppressed cell mobility, migration and invasion of SCC-4 cells dose-dependently. K87 inhibited the enzymatic activities of MMP-2/9 of SCC-4 cells. Western blot analysis revealed that K87 decreased the protein levels in NF-κBp65, COX-2, ROCK1 and Rho A, MMP-1, -2,- 7, -9, VEGF, GRB2, SOS1, PI3K, PKC, PERK, p-PERK, FAK, MEKK3, MKK7, ERK1/2, JNK1/2, p-p38, p38, p-c-Jun, AKT, TIMP2, but increased the protein levels of iNOS, Ras, IRE-1α, p-c-JNK, p-AKT(308), p-AKT(473) and TIMP1. Results from PCR indicated that K87 inhibited the gene expression of MMP-2/-7, FAK and ROCK1 mRNA. Furthermore, confocal laser microscopy was used to confirm that K87 inhibited the translocation of RHOA and ROCK1 in SCC-4 cells. EMSA assay also show that K87 suppressed the nuclear activation of NF-κB and these effects are time-dependent. Western blotting assay indicated that expression of NF-κBp105, NF-κBp50 and NF-κBp65 proteins were decreased and these effects are time-dependent. Based on these observations, we suggest that K87 may be used as a potential agent for anticancer metastasis of human oral cancer in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app