JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Altered Expression of the Long Noncoding RNA NEAT1 in Huntington's Disease.

Huntington's disease (HD) is a devastating neurodegenerative disease caused by cytosine-adenine-guanine trinucleotide repeat expansion in the huntingtin gene. Growing evidence supports the regulatory functions of long noncoding RNAs (lncRNAs) in the disease process, but little is known about the association between lncRNAs and neuronal death in HD. Here, we evaluated the altered expression profiles of lncRNA in HD by using microarrays. Among dysregulated lncRNAs, we focused on the upregulation of nuclear paraspeckle assembly transcript 1 (NEAT1). Quantitative PCR analysis validated increased NEAT1 levels in the R6/2 mouse brain as well as the human HD postmortem brain. To determine the biological effects of NEAT1 on neuronal survival, neuro2A cells were transfected with the NEAT1 short isoform vector and were subjected to H2 O2 -induced injury. Subsequently, NEAT1-transfected cells showed increased viability under oxidative stress. Our observations support the notion that NEAT1 upregulation in HD contributes to the neuroprotective mechanism against neuronal injury rather than the pathological process underlying neurodegeneration in HD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app