Add like
Add dislike
Add to saved papers

Heme oxygenase 1 induction protects myocardiac cells against hypoxia/reoxygenation-induced apoptosis : The role of JNK/c-Jun/Caspase-3 inhibition and Akt signaling enhancement.

Herz 2016 December
BACKGROUND: Although recent studies have found that heme oxygenase (HO)-1 plays an important role in myocardiac cell survival, the precise mechanisms occurring during hypoxia/reoxygenation (H/R) injury remain unclear. Therefore, the aim of this study was to investigate the cytoprotective mechanisms of HO-1 against H/R-induced myocardiac cell apoptosis and to explore whether the Akt signaling pathway contributed to the protection provided by HO-1.

METHODS: Cobalt protoporphyrin (CoPP, a pharmacologic inducer of HO-1) was employed to induce the over-expression of HO-1 before H/R in H9c2 cells. Hoechst staining and flow cytometry were used to examine the extent of apoptosis. Furthermore, the effect of HO-1 on Akt, JNK, and the expression of apoptosis-related proteins (c-JUN and Caspase-3) was determined by Western blotting.

RESULTS: The results showed that over-expressed HO-1 could significantly protect myocardiac cells against H/R-induced apoptosis in H9c2 cells. Furthermore, the protein expression of p‑Akt increased and of p‑JNK decreased in the H/R injury H9c2 cells when treated with CoPP. The apoptosis-related proteins c‑Jun and caspase-3 were both inhibited by over-expression of HO-1. At the same time, retreatment with zinc protoporphyrin (ZnPP, a specific inhibitor of HO-1 enzymatic activity) or LY294002 (an inhibitor of Akt1) reversed the HO-1-induced changes.

CONCLUSION: In summary, our results suggest that HO-1 can decrease H/R-induced myocardiac cell apoptosis; the mechanism may be related to the activation of the Akt signaling pathway and, furthermore, to the inhibition of the JNK/c-Jun/caspase-3 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app