Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines.

The QSPR method is used in photochemistry for the prediction of the absorption wavelength, fluorescence intensity, photolysis quantum yield, etc. However, to our knowledge, no attempts have been made to use the quantum yield of singlet oxygen ((1)O2) generation (ΦΔ) as an analyzed parameter in a QSPR study. We performed QSPR analysis of 29 pteridine compounds (including pterin and flavin sensitizers) for their ability to produce singlet oxygen in aqueous (D2O) solutions. Pteridines are ubiquitously present in living systems (mostly as coenzymes), possess high photochemical activity and have multiple applications as photosensitizers. Our goal was to develop a QSPR model for the fast virtual screening and prediction of the (1)O2 generation quantum yield of pteridines. Quantum-chemical descriptors were calculated using the AM1 semi-empirical method. The ability of pteridines to generate singlet oxygen was found to be significantly correlated with the HOMO orbital energy (R(2) = 0.806) and electronegativity (R(2) = 0.840). The best QSPR model obtained using electronegativity, dipole density and electrostatic charge of the N3 atom of the pteridine system allows us to predict ΦΔ of pterin and flavin photosensitizers. The model possesses high internal stability (q(2) = 0.881), as well as high predicting ability for the external dataset (pred_R(2) = 0.873). More QSPR analysis is needed for the prediction of ΦΔ of pteridines and other groups of sensitizers in aqueous as well as in non-polar solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app