JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction.

Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app