Add like
Add dislike
Add to saved papers

Generalizing Quantile Regression for Counting Processes with Applications to Recurrent Events.

In survival analysis, quantile regression has become a useful approach to account for covariate effects on the distribution of an event time of interest. In this paper, we discuss how quantile regression can be extended to model counting processes, and thus lead to a broader regression framework for survival data. We specifically investigate the proposed modeling of counting processes for recurrent events data. We show that the new recurrent events model retains the desirable features of quantile regression such as easy interpretation and good model flexibility, while accommodating various observation schemes encountered in observational studies. We develop a general theoretical and inferential framework for the new counting process model, which unifies with an existing method for censored quantile regression. As another useful contribution of this work, we propose a sample-based covariance estimation procedure, which provides a useful complement to the prevailing bootstrapping approach. We demonstrate the utility of our proposals via simulation studies and an application to a dataset from the US Cystic Fibrosis Foundation Patient Registry (CFFPR).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app