JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis.

Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to 2 widely used engineered metal oxide nanoparticles, titanium dioxide (nano-titania) and cerium dioxide (nano-ceria). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes found under nano-titania exposure. Nano-titania induced more differentially expressed genes in rosette leaves, whereas roots had more differentially expressed genes under nano-ceria exposure. MapMan analyses indicated that although nano-titania up-regulated overall metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level, possibly because of functional and genomic redundancy in Arabidopsis, which may mask expression of morphological changes, despite discernable responses at the transcriptome level. In addition, transcriptomic changes often relate to transgenerational phenotypic development, and hence it may be productive to direct further experimental work to integrate high-throughput genomic results with longer term changes in subsequent generations. Environ Toxicol Chem 2017;36:71-82. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app