Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

A Caenorhabditis elegans Genome-Scale Metabolic Network Model.

Cell Systems 2016 May 26
Caenorhabditis elegans is a powerful model to study metabolism and how it relates to nutrition, gene expression, and life history traits. However, while numerous experimental techniques that enable perturbation of its diet and gene function are available, a high-quality metabolic network model has been lacking. Here, we reconstruct an initial version of the C. elegans metabolic network. This network model contains 1,273 genes, 623 enzymes, and 1,985 metabolic reactions and is referred to as iCEL1273. Using flux balance analysis, we show that iCEL1273 is capable of representing the conversion of bacterial biomass into C. elegans biomass during growth and enables the predictions of gene essentiality and other phenotypes. In addition, we demonstrate that gene expression data can be integrated with the model by comparing metabolic rewiring in dauer animals versus growing larvae. iCEL1273 is available at a dedicated website (wormflux.umassmed.edu) and will enable the unraveling of the mechanisms by which different macro- and micronutrients contribute to the animal's physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app