Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury.

Disturbance of glutamate homeostasis is a well-characterized mechanism of neuropathic pain. Vesicular glutamate transporters (VGLUTs) determine glutamate accumulation in synaptic vesicles and their roles in neuropathic pain have been suggested by gene-knockout studies. Here, we investigated the spatio-temporal changes in VGLUT expression during the development of neuropathic pain in wild-type rats. Spared nerve injury (SNI) induced mechanical allodynia from postoperative day 1 to at least day 14. Expression of VGLUT1 and VGLUT2 in dorsal root ganglia and spinal cord was examined by western blot analyses on different postoperative days. We observed that VGLUT2 were selectively upregulated in crude vesicle fractions from the ipsilateral lumbar enlargement on postoperative days 7 and 14, while VGLUT1 was transiently downregulated in ipsilateral DRG (day 4) and contralateral lumbar enlargement (day 1). Upregulation of VGLUT2 was not accompanied by alterations in vesicular expression of synaptotagmin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thus, VGLUTs expression, especially VGLUT2, is regulated following peripheral nerve injury. Temporal regulation of VGLUT2 expression in spinal cord may represent a novel presynaptic mechanism contributing to injury-induced glutamate imbalance and associated neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app