JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

(+)-Pentazocine reduces oxidative stress and apoptosis in microglia following hypoxia/reoxygenation injury.

BACKGROUND: Sigma-1 receptors (σ1R) are highly expressed in neurons as well as microglia and have been shown to modulate the inflammatory response in the central nervous system and thus may serve as possible target for neuroprotective strategies. The aim of the present study was to test the effect of (+)-pentazocine, a putative σ 1R agonist, in an in vitro model of microglia activation.

METHODS: Microglia (BV2 cells) was exposed (3h) to 1% oxygen and reoxygenation was allowed for 24h. Cells were treated with different concentrations (1, 10, 25 and 50μM) of (+)-pentazocine in the presence or absence of NE-100 (1μM), a well established σ1R antagonist. Cell viability and apoptosis were measured by cytofluorimetric analysis, whereas oxidative stress was evaluated by reduced glutathione (GSH) content and mitochondrial potential analysis.

RESULTS: Our results showed that (+)-pentazocine was able to increase cell viability and restore mitochondrial potential at all concentrations whereas only 1 and 10μM were able to reduce significantly apoptotic cell death, to restore reduced glutathione intracellular content and prevent ERK1/2 phosphorylation. All these effects were abolished by concomitant treatment with NE-100.

CONCLUSIONS: (+)-pentazocine exhibits significant dose dependent protective effects in our in vitro model of microglial activation thus suggesting that σ1R may represent a possible target for neuroprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app