Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts.

Redox Biology 2016 August
Mice deficient in the electron transport chain (ETC) complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPR(MT)) and increased mitochondrial number. We hypothesized that the upregulation of proteins associated with the UPR(MT) in response to reduced cytochrome c oxidase activity in Surf1(-/-) mice might contribute to increased stress resistance. To test this hypothesis we asked whether primary cultures of fibroblasts from Surf1(-/-) mice exhibit enhanced resistance to stressors compared to wild-type fibroblasts. Here we show that primary dermal fibroblasts isolated from Surf1(-/-) mice have increased expression of UPR(MT) components ClpP and Hsp60, and increased expression of Lon protease. Fibroblasts from Surf1(-/-) mice are significantly more resistant to cell death caused by oxidative stress induced by paraquat or tert-Butyl hydroperoxide compared to cells from wild-type mice. In contrast, Surf1(-/-) fibroblasts show no difference in sensitivity to hydrogen peroxide stress. The enhanced cell survival in response to paraquat or tert-Butyl hydroperoxide in Surf1(-/-) fibroblasts compared to wild-type fibroblasts is associated with induced expression of Lon, ClpP, and Hsp60, increased maximal respiration, and increased reserve capacity as measured using the Seahorse Extracellular Flux Analyzer. Overall these data support a protective role for the activation of the UPR(MT) in cell survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app