Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Involvement of microRNAs in epileptogenesis.

Epilepsia 2016 July
Patients who have sustained brain injury or had developmental brain lesions present a non-negligible risk for developing delayed epilepsy. Finding therapeutic strategies to prevent development of epilepsy in at-risk patients represents a crucial medical challenge. Noncoding microRNA molecules (miRNAs) are promising candidates in this area. Indeed, deregulation of diverse brain-specific miRNAs has been observed in animal models of epilepsy as well as in patients with epilepsy, mostly in temporal lobe epilepsy (TLE). Herein we review deregulated miRNAs reported in epilepsy with potential roles in key molecular and cellular processes underlying epileptogenesis, namely neuroinflammation, cell proliferation and differentiation, migration, apoptosis, and synaptic remodeling. We provide an up-to-date listing of miRNAs altered in epileptogenesis and assess recent functional studies that have interrogated their role in epilepsy. Last, we discuss potential applications of these findings for the future development of disease-modifying therapeutic strategies for antiepileptogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app