JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nanosecond ligand migration and functional protein relaxation in ba3 oxidoreductase: Structures of the B0, B1 and B2 intermediate states.

Nanosecond time-resolved step-scan FTIR spectroscopy (nTRS (2) -FTIR) has been applied to literally probe the active site of the carbon monoxide (CO)-bound thermophilic ba3 heme-copper oxidoreductase as it executes its function. The nTRS (2) - snapshots of the photolysed heme a3 Fe-CO/CuB species captured a "transition state" whose side chains prevent the photolysed CO to enter the docking cavity. There are three sets of ba3 photoproduct bands of docked CO with different orientation exhibiting different kinetics. The trajectories of the "docked" CO at 2122, 2129 and 2137cm(-1) is referred to in the literature as B2, B1 and B0 intermediate states, respectively. The present data provided direct evidence for the role of water in controlling ligand orientation in an intracavity protein environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app