Journal Article
Review
Add like
Add dislike
Add to saved papers

A literature review on the pharmacological sensitivity of human evoked hyperalgesia pain models.

AIMS: Human evoked pain models can be used to determine the efficacy of new and existing analgesics and to aid in the identification of new targets. Aspects of neuropathic pain can be simulated by inducing hyperalgesia resulting from provoked sensitization. The present literature review aimed to provide insight into the sensitivity of different hyperalgesia and allodynia models of pharmacological treatment.

METHODS: A literature search was performed to identify randomized, double-blind, placebo-controlled studies that included human hyperalgesia pain models and investigated the pharmacodynamic effects of different classes of drugs.

RESULTS: Three hyperalgesia models [ultraviolet B (UVB) irradiation, capsaicin and thermode burn] have been used extensively. Assessment of hyperalgesia/allodynia and pharmacological effect are measured using challenge tests, which generally comprise thermal (heat/cold) or mechanical stimulation (pin-prick, stroking or impact). The UVB model was sensitive to the antihyperalgesic effects of nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids. The capsaicin model was partially sensitive to opioids. The burn model did not detect any antihyperalgesic effects when NSAIDs or local anaesthetics were administered but responded to the effects of N-methyl D-aspartate (NMDA) receptor antagonists by moderately reducing mechanical hyperalgesia.

CONCLUSIONS: Based on pharmacological sensitivity, the UVB model adequately reflects inflammatory pain and was sensitive to NSAIDs and opioids. Findings from the capsaicin and burn models raised questions about the translatability of these models to the treatment of neuropathic pain. There is a need for a reproducible and predictive model of neuropathic pain, either in healthy subjects or in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app