JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording.

ENeuro 2016 March
Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µM) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app