JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Androgen-sensitive hypertension associated with soluble guanylate cyclase-α1 deficiency is mediated by 20-HETE.

Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app