JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pregnancy-associated adaptations in [Ca2+]i-dependent and Ca2+ sensitization mechanisms of venous contraction: implications in pregnancy-related venous disorders.

Pregnancy is associated with significant adaptations in the maternal hemodynamics and arterial circulation, but the changes in the venous mechanisms during pregnancy are less clear. We hypothesized that pregnancy is associated with alterations in venous function, intracellular free Ca(2+) concentration ([Ca(2+)]i), and Ca(2+)-dependent mechanisms of venous contraction. Circular segments of inferior vena cava (IVC) from virgin and late pregnant (Preg, day 19) Sprague-Dawley rats were suspended between two hooks, labeled with fura-2, and placed in a cuvet inside a spectrofluorometer for simultaneous measurement of contraction and [Ca(2+)]i (fura-2 340/380 ratio). KCl (96 mM), which stimulates Ca(2+) influx, caused less contraction (35.6 ± 6.3 vs. 92.6 ± 19.9 mg/mg tissue) and smaller increases in [Ca(2+)]i (1.67 ± 0.12 vs. 2.19 ± 0.11) in Preg vs. virgin rat IVC. The α-adrenergic receptor agonist phenylephrine (Phe; 10(-5) M) caused less contraction (23.8 ± 3.4 vs. 70.9 ± 12.9 mg/mg tissue) and comparable increases in [Ca(2+)]i (1.76 ± 0.10 vs. 1.89 ± 0.08) in Preg vs. virgin rat IVC. At increasing extracellular Ca(2+) concentrations ([Ca(2+)]e) (0.1, 0.3, 0.6, 1, and 2.5 mM), KCl and Phe induced [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves that were reduced in Preg vs. virgin IVC, supporting reduced Ca(2+) entry mechanisms. The [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves were used to construct the [Ca(2+)]i-contraction relationship. Despite reduced contraction and [Ca(2+)]i in Preg IVC, the Phe-induced [Ca(2+)]i-contraction relationship was greater than that of KCl and was enhanced in Preg vs. virgin IVC, suggesting parallel activation of Ca(2+)-sensitization pathways. The Ca(2+) channel blocker diltiazem, protein kinase C (PKC) inhibitor GF-109203X, and Rho-kinase (ROCK) inhibitor Y27632 inhibited KCl- and Phe-induced contraction and abolished the shift in the Phe [Ca(2+)]i-contraction relationship in Preg IVC, suggesting an interplay between the decrease in Ca(2+) influx and possible compensatory activation of PKC- and ROCK-mediated Ca(2+)-sensitization pathways. The reduced [Ca(2+)]i and [Ca(2+)]i-dependent contraction in Preg rat IVC, despite the parallel rescue activation of Ca(2+)-sensitization pathways, suggests that the observed reduction in [Ca(2+)]i-dependent contraction mechanisms is likely underestimated, and that the veins without the rescue Ca(2+)-sensitization pathways could be even more prone to dilation during pregnancy. These pregnancy-associated reductions in Ca(2+) entry-dependent mechanisms of venous contraction, if occurring in human lower extremity veins and if not adequately compensated by Ca(2+)-sensitization pathways, may play a role in pregnancy-related venous disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app