Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human Senataxin Modulates Structural Plasticity of the Neuromuscular Junction in Drosophila through a Neuronally Conserved TGFβ Signalling Pathway.

BACKGROUND: Mutations in the human Senataxin (hSETX) gene have been shown to cause two forms of neurodegenerative disorders - a dominant form called amyotrophic lateral sclerosis type 4 (ALS4) and a recessive form called ataxia with oculomotor apraxia type 2 (AOA2). SETX is a putative DNA/RNA helicase involved in RNA metabolism. Although several dominant mutations linked with ALS4 have been identified in SETX, their contribution towards ALS4 pathophysiology is still elusive.

METHOD: In order to model ALS4 in Drosophila and to elucidate the morphological, physiological and signalling consequences, we overexpressed the wild-type and pathological forms of hSETX in Drosophila.

RESULTS AND CONCLUSIONS: The pan-neuronal expression of wild-type or mutant forms of hSETX induced morphological plasticity at neuromuscular junction (NMJ) synapses. Surprisingly, we found that while the NMJ synapses were increased in number, the neuronal function was normal. Analysis of signalling pathways revealed that hSETX modulates the Highwire (Hiw; a conserved neuronal E3 ubiquitin ligase)-dependent bone morphogenetic protein/TGFβ pathway. Thus, our study could pave the way for a better understanding of ALS4 progression by SETX through the regulation of neuronal E3 ubiquitin pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app