JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analysis of Humoral Immune Responses to Surface and Virulence-Associated Chlamydia abortus Proteins in Ovine and Human Abortions by Use of a Newly Developed Line Immunoassay.

The obligate intracellular bacterium Chlamydia abortus is the causative agent of enzootic abortion of ewes and poses a significant zoonotic risk for pregnant women. Using proteomic analysis and gene expression library screening in a previous project, we identified potential virulence factors and candidates for serodiagnosis, of which nine were scrutinized here with a strip immunoassay. We have shown that aborting sheep exhibited a strong antibody response to surface (MOMP, MIP, Pmp13G) and virulence-associated (CPAF, TARP, SINC) antigens. While the latter disappeared within 18 weeks following abortion in a majority of the animals, antibodies to surface proteins persisted beyond the duration of the study. In contrast, nonaborting experimentally infected sheep developed mainly antibodies to surface antigens (MOMP, MIP, Pmp13G), all of which did not persist. We were also able to detect antibodies to these surface antigens in C abortus-infected women who had undergone septic abortion, whereas a group of shepherds and veterinarians with occupational exposure to C abortus-infected sheep revealed only sporadic immune responses to the antigens selected. The most specific antigen for the serodiagnosis of human C abortus infections was Pmp13G, which showed no cross-reactivity with other chlamydiae infecting humans. We suggest that Pmp13G-based serodiagnosis accomplished by the detection of antibodies to virulence-associated antigens such as CPAF, TARP, and SINC may improve the laboratory diagnosis of human and animal C abortus infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app