Add like
Add dislike
Add to saved papers

Biomechanical properties of osteoporotic rat femurs after different hormonal treatments: genistein, estradiol, and estradiol/progesterone.

SICOT-J 2016
INTRODUCTION: The purpose of the study is to compare the effects of genistein, estradiol, estradiol/progesterone combination on the bone mineral density and biomechanical properties of ovariectomized rats' bone.

METHODS: 50 female adult Sprague-Dawley rats were divided into five groups. Bilaterally ovaeriectomy were performed in all groups except the sham-operated group. Groups were a sham-operated group and a control group (water was given), estradiol treated group (17-β estradiol 0.015 mg/kg per day), genistein treated group (genistein 10 mg/kg per day), and an estradiol/progesterone combination group (17-β estradiol 0.015 mg/kg plus drosperinone 0.028 mg/kg per day). The water or hormones were implemented in relevant groups for eight weeks by orogasthric catheter. The bone mineral density and biomechanical properties of the femur were analyzed.

RESULTS: Genistein, estradiol, and estradiol/progesterone groups increased bone mineral density significantly compared to the control group. In diaphysis and metaphysis bending test, all groups had higher peak load values than the control group. There were statistically significant differences between the estrogen/progesterone group and control group in diaphysis bending with regard to peak load. There were statistically significant differences between the estradiol and control groups in metaphysis bending with regard to peak load. In axial rotation test, all groups had higher peak torque values than the control groups.

CONCLUSIONS: Genistein, estradiol and estrogen/progesterone combination improved the biomechanical properties of the ovariectomized rat bone. Genistein which has less side effects may be considered as an alternative in the treatment of postmenopausal osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app