JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of Kidney and Skeleton Phenotypes of Mice Double Heterozygous for Foxc1 and Foxc2.

Foxc1 and Foxc2 play key roles in mouse development. Foxc1 mutant mice develop duplex kidneys with double ureters, and lack calvarial and sternal bones. Foxc2 null mice have been reported to have glomerular abnormalities in the kidney and axial skeletal anomalies. Expression patterns of Foxc1 and Foxc2 overlap extensively and are believed to have interactive roles. However, cooperative roles of these factors in glomerular and skeletal development are unknown. Therefore, we examined the kidneys and skeleton of mice that were double heterozygous for Foxc1 and Foxc2. Double heterozygotes were generated by mating single heterozygotes for Foxc1 and Foxc2. Newborn double heterozygous mice showed many anomalies in the kidney and urinary tract resembling Foxc1 phenotypes, including duplex kidneys, double ureters, hydronephrosis and mega-ureter. Some mice had hydronephrosis alone. In addition to these macroscopic anomalies, some mice had abnormal glomeruli and disorganized glomerular capillaries observed in Foxc2 phenotypes. Interestingly, these mice also showed glomerular cysts not observed in the single-gene knockout of either Foxc1 or Foxc2 but observed in conditional knockout of Foxc2 in the kidney. Serial section analysis revealed that all cystic glomeruli were connected to proximal tubules, precluding the possibility of atubular glomeruli resulting in cyst formation. Dorsally opened vertebral arches and malformations of sternal bones in the double heterozygotes were phenotypes similar to Foxc1 null mice. Absent or split vertebral bodies in the double heterozygotes were phenotypes similar to Foxc2 null mice, whilst hydrocephalus noted in the Foxc1 phenotype was not observed. Thus, Foxc1 and Foxc2 have a role in kidney and axial skeleton development. These transcription factors might interact in the regulation of the embryogenesis of these organs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app