JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Resistance to 3-HTMC-Induced Apoptosis Through Activation of PI3K/Akt, MEK/ERK, and p38/COX-2/PGE 2 Pathways in Human HT-29 and HCT116 Colorectal Cancer Cells.

Increasing incidence and mortality of colorectal cancer brings the necessity to uncover new possibilities in its prevention and treatment. Chalcones have been identified as interesting compounds having chemopreventive and antitumor properties. In this study, we investigated the effects of the synthetic chalcone derivative 3-hydroxy-3',4,4',5'-tetra-methoxy-chalcone (3-HTMC) on proliferation, cell cycle distribution, apoptosis, and its mechanism of action in human colorectal HT-29 (COX-2 sufficient) and HCT116 (COX-2 deficient) cancer cells. We showed that 3-HTMC decreased cell viability in a dose-dependent manner with a more potent antiproliferative effect on HCT116 than HT-29 cells. Flow cytometric analysis revealed G2 /M cell cycle accumulation in HT-29 cells and significant G2 /M arrest in HCT116 cells with a subsequent apoptosis shown by appearance of Sub-G1 peak. We demonstrated that 3-HTMC treatment on both cell lines induced apoptotic process associated with overexpression of death receptor DR5, activation of caspase-8 and -3, PARP cleavage, and DNA fragmentation. In addition, 3-HTMC induced activation of PI3K/Akt and MEK/ERK principal survival pathways which delay 3-HTMC-induced apoptosis in both cell lines. Furthermore, COX-2 overexpression in HT-29 cells contributes to apoptosis resistance which explains the difference of sensitivity between HT-29 and HCT116 cells to 3-HTMC treatment. Even if resistance mechanisms to apoptosis reduced chalcone antitumoral potential, our results suggest that 3-HTMC may be considered as an interesting compound for colorectal cancer therapy or chemoprevention. J. Cell. Biochem. 117: 2875-2885, 2016. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app