Add like
Add dislike
Add to saved papers

Contrasting photophysical properties of rhenium(i) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand.

In the present work, new rhenium(i) polypyridyl compounds, fac-[Re(L)(CO)3(cbz2phen)](+/0) where cbz2phen = 4,7-di(9H-carbazol-9-yl)-1,10-phenanthroline and L = Cl(-), pyridine (py) or 2-aminomethylpyridine (ampy) were synthesized and characterized by (1)H NMR, UV-Vis and IR spectroscopy combined with theoretical calculations using time-dependent density functional theory (TD-DFT). Their photophysical properties were investigated by steady state and time-resolved emission spectroscopy. These compounds show a strong and broad absorption band around 350-500 nm that, also by TD-DFT, corresponds to the carbazol → phenanthroline intraligand charge transfer transition, (1)ILCTcbz2phen, with some contribution of the Re(i) → phenanthroline metal-to-ligand charge transfer transition, (1)MLCTRe→cbz2phen. In contrast to typical Re(i) polypyridyl complexes, cbz2phen-based Re(i) compounds exhibit two emission maxima in CH3CN solution and relatively low emission quantum yields, 10(-3)-10(-2). Solution phase time-resolved photoluminescence and excited state quenching experiments provided meaningful information on the presence of multiple emitter states after light excitation, which were identified as an (1)ILCTcbz2phen excited state deactivation at higher energies and a long-lived phosphorescence attributed to the (3)MLCTRe→cbz2phen excited state. When embedded into a PMMA matrix, the radiative decay from the singlet state is inhibited and the contribution of both (3)MLCT and (3)ILCTcbz2phen to the luminescence is observed. The photophysics of these Re(i) compounds reported herein provide new insights into the understanding of substitutional groups on the polypyridyl ligands that are relevant to practical and fundamental development of photo-induced molecular devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app