Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Dopamine Reuptake Inhibitors in Parkinson's Disease: A Review of Nonhuman Primate Studies and Clinical Trials.

Striatal dopamine deficiency is the core feature of the pathology of Parkinson's disease (PD), and dopamine replacement with l-3,4-dihydroxyphenylalanine (l-DOPA) is the mainstay of PD treatment. Unfortunately, chronic l-DOPA administration is marred by the emergence of dyskinesia and wearing-off. Alternatives to l-DOPA for alleviation of parkinsonism are of interest, although none can match the efficacy of l-DOPA to date. Catechol-O-methyltransferase and monoamine oxidase inhibitors are currently used to alleviate wearing-off, but they do not increase "on-time" without exacerbating dyskinesia. Alternate approaches to dopamine replacement in parkinsonism generally (and to wearing-off and dyskinesia, specifically) are therefore urgently needed. Inasmuch as they increase synaptic dopamine levels, dopamine transporter (DAT) inhibitors, whether they are selective or have actions on noradrenaline or serotonin transporters, theoretically represent an attractive way to alleviate parkinsonism per se and potentially enhance l-DOPA antiparkinsonian action (provided that sufficient dopamine terminals remain within the striatum). Several nonhuman primate studies and clinical trials have been performed to evaluate the potential of DAT inhibitors for PD. In this article, we review nonhuman primate studies and clinical trials, we summarize the current knowledge of DAT inhibitors in PD, and we propose a hypothesis as to how tailoring the selectivity of DAT inhibitors might maximize the benefits of DAT inhibition in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app