JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.

Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca(2+) sparklets mediated by L-type voltage-dependent Ca(2+) channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca(2+) influx acts as an essential transducer in establishing a global front-to-rear increasing Ca(2+) gradient. This asymmetrical Ca(2+) gradient is crucial for maintaining front-rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca(2+) sparklets and front-rear coordination during directed cell migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app