Add like
Add dislike
Add to saved papers

Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC.

Parkinson's disease (PD) is a complex illness characterized by progressive dopaminergic neuronal loss. Several mechanisms associated with the iron-induced death of dopaminergic cells have been described. Ferroptosis is an iron-dependent, regulated cell death process that was recently described in cancer. Our present work show that ferroptosis is an important cell death pathway for dopaminergic neurons. Ferroptosis was characterized in Lund human mesencephalic cells and then confirmed ex vivo (in organotypic slice cultures) and in vivo (in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model). Some of the observed characteristics of ferroptosis differed from those reported previously. For example, ferroptosis may be initiated by PKCα activation, which then activates MEK in a RAS-independent manner. The present study is the first to emphasize the importance of ferroptosis dysregulation in PD. In neurodegenerative diseases like PD, iron chelators, Fer-1 derivatives and PKC inhibitors may be strong drug candidates to pharmacologically modulate the ferroptotic signaling cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app