Add like
Add dislike
Add to saved papers

Identifying a biomarker network for corticosteroid resistance in asthma from bronchoalveolar lavage samples.

Corticosteroid resistance (CR) is a major barrier to the effective treatment of severe asthma. Hence, a better understanding of the molecular mechanisms involved in this condition is a priority. Network analysis is an emerging strategy to explore this complex heterogeneous disorder at system level to identify a small own network for CR in asthma. Gene expression profile of GSE7368 from bronchoalveolar lavage (BAL) of CR in subjects with asthma was downloaded from the gene expression omnibus (GEO) database and compared to BAL of corticosteroid-sensitive (CS) patients. DEGs were identified by the Limma package in R language. In addition, DEGs were mapped to STRING to acquire protein-protein interaction (PPI) pairs. Topological properties of PPI network were calculated by Centiscape, ClusterOne and BINGO. Subsequently, text-mining tools were applied to design one own cell signalling for CR in asthma. Thirty-five PPI networks were obtained; including a major network consisted of 370 nodes, connected by 777 edges. After topological analysis, a minor PPI network composed by 48 nodes was indentified, which is composed by most relevant nodes of major PPI network. In this subnetwork, several receptors (EGFR, EGR1, ESR2, PGR), transcription factors (MYC, JAK), cytokines (IL8, IL6, IL1B), one chemokine (CXCL1), one kinase (SRC) and one cyclooxygenase (PTGS2) were described to be associated with inflammatory environment and steroid resistance in asthma. We suggest a biomarker network composed by 48 nodes that could be potentially explored with diagnostic or therapeutic use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app