Add like
Add dislike
Add to saved papers

Achieving high resolution and optimizing sensitivity in spatial frequency encoding NMR spectroscopy: from theory to practice.

A detailed analysis of NMR spectra acquired based on spatial frequency encoding is presented. A theoretical model to simulate gradient encoded pulses is developed in order to describe the spatial properties of the NMR signals that are locally created throughout the sample. The key features that affect the efficiency of the slice selection process during excitation as well as refocusing pulses are investigated on a model ABX spin system, both theoretically and experimentally. It is shown that the sensitivity and resolution of the pure shift and J-edited experiments based on a spatial frequency encoding can be optimized to a point where high-resolution techniques based on a spatial frequency encoding approach show optimal performance compared to other methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app