JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression.

Scientific Reports 2016 May 19
Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11b(hi) regulatory dendritic cells (DCs) can produce more IL-10, and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam(-/-)) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app