Add like
Add dislike
Add to saved papers

Zinc wave during the treatment of hypoxia is required for initial reactive oxygen species activation in mitochondria.

Mitochondrial reactive oxygen species (ROS) are known to accumulate during chemical hypoxia, causing adverse effects on cell function and survival. Recent studies show important role zinc accumulation plays in dysfunction associated with hypoxia. It is well known that ROS accumulation also plays a major role in cellular damage by hypoxia. In this study, fluorescent imaging and pharmacological methods were used in live HeLa cells to determine role of zinc in initial ROS accumulation in mitochondria during chemical hypoxia (oxygen glucose depravation with 4 mM sodium dithionite). Accumulation of both was observed as a very rapid phenomenon with initial rapid zinc increase (zinc wave) within 60 seconds of hypoxia onset and ROS increase within 4.5 minutes. Zinc chelation with TPEN removed the initial zinc wave which in turn abolished ROS accumulation. Influx of exogenous zinc induced rapid ROS accumulation. Inhibition of NADPH oxidase with apocynin, a NADPH oxidase inhibitor, showed significant and prolonged reduction in zinc induced ROS accumulation. We proposed a novel mechanism of intracellular zinc increase that activates NADPH oxidase which in turn triggers mitochondrial ROS production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app