Add like
Add dislike
Add to saved papers

Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction.

Electrospun nanofibrous sheets get increasing attention in myocardial infarction (MI) treatment due to their good cytocompatibility to deliver transplanted stem cells to infarcted areas and due to mechanical characteristics to support damaged tissue. Cardiac extracellular matrix is essential for implanted cells since it provides the cardiac microenvironment. In this study, we hypothesized high concentrations of cardiac nature protein (NP), namely elastin and collagen, in hybrid polycaprolactone (PCL) electrospun nanofibrous sheets could be effective as cardiac-mimicking patch. Optimal ratio of elastin and collagen with PCL in electrospun sheets (80% NP/PCL) was selected based on cytocompatibility and mechanical characteristics. Bone-marrow (BM) c-kit(+) cells anchoring onto NP/PCL sheets exhibited increased proliferative capacity compared with those seeded on PCL in vitro. Moreover, we examined the improvement of cardiac function in MI mice by cell-seeded cardiac patch. Green Fluorescent Protein (GFP)-labeled BM c-kit(+) cells were loaded on 80% NP/PCL sheets which was transplanted into MI mice. Both 80% NP/PCL and c-kit(+)-seeded 80% NP/PCL effectively improved cardiac function after 4 weeks of transplantation, with reduced infarction area and restricted LV remodeling. C-kit(+)-seeded 80% NP/PCL was even superior to the 80% NP/PCL alone and both superior to PCL. GFP(+) cells were identified both in the sheets and local infarcted area where transplanted cells underwent cardiac differentiation after 4 weeks. To the best of our knowledge, this is the first report that sheets with high concentrations of nature proteins loaded with BM c-kit(+) cells might be a novel promising candidate for tissue-engineered cardiac patch to improve cardiac repair after MI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app